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1. Introduction

Let

S/R an extension of commutative rings

R the integral closure of R in Q(R).

We define

R ⊆ R∗ = {x ∈ S | x ⊗ 1 = 1⊗ x in S ⊗R S} ⊆ S

and we say that

R is strictly closed in S , if R = R∗ holds in S .

R is strictly closed, if R = R∗ holds in R.

Notice that

(R∗)∗ = R∗ in S

R∗ ⊆ T ∗ in S for all R ⊆ T ⊆ S .
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Example 1.1

Let S = k[X ,Y ] be the polynomial ring over a field k and consider

R = k[X 4,XY 3,Y 4].

Then

R ⊆ R∗ = k[X 4,XY 3,X 7Y 5,Y 4] ⊆ R = k[X 4,X 3Y ,X 2Y 2,XY 3,Y 4]

where R∗ denotes the strict closure of R in R.

(Proof) We set T = k[X 4,XY 3,X 7Y 5,Y 4]. Consider a = b = X 4Y 4 and
c = XY 3. Then a, b, c ∈ R, a

c = b
c = X 3Y ∈ R and

ab

c
⊗ 1 =

a

c
⊗
(
c · b

c

)
=

(a
c
· c

)
⊗ b

c
= 1⊗ ab

c
in R ⊗R R.

This shows X 7Y 5 = ab
c ∈ R∗, so that T ⊆ R∗.
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Note that R = R + R·X 3Y + R·X 2Y 2. We consider a presentation of R

R⊕5 M−→ R⊕3 ε−→ R −→ 0

as an R-module, where ε =
[
1 X 3Y X 2Y 2

]
and

M =

X 2Y 6 X 4Y 4 X 3Y 9 0 0
0 −XY 3 −Y 8 Y 4 X 3Y 9

−Y 4 0 0 −XY 3 −X 4Y 8

 .

By applying R ⊗R (−), we have

R ⊗R R⊕5 R⊗M // R ⊗R R⊕3 R⊗ε // R ⊗R R // 0.

R
⊕5

∼=

OO

M // R
⊕3

∼=

OO

Let α ∈ R∗ and write α = α0 + α1X
3Y + α2X

2Y 2 for ∃ αi ∈ R. Set
β = α1X

3Y + α2X
2Y 2. Then, since R ⊆ R∗, we have β ∈ R∗.
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Therefore

β ⊗ 1− 1⊗ β = β ⊗ 1−
[
α1(1⊗ X 3Y ) + α2(1⊗ X 2Y 2)

]
= 0 in R ⊗R R.

By setting {ei}0≤i≤2 the standard basis of R⊕3, we obtain

β ⊗ e0 − [α1(1⊗ e1) + α2(1⊗ e2)] ∈ Ker(R ⊗ ε)

which yields (
β

−α1
−α2

)
∈ Im(R

⊕5 M−→ R
⊕3

).

This implies β ∈ J, the ideal of R generated by all the entries of the first row of
M. Hence

α = α0 + β ∈ R + (X 2Y 6,X 4Y 4,X 3Y 9)R = R + R·X 7Y 5 ⊆ T .

This shows T = R∗.
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Theorem 1.2

Suppose S = R + Rf1 + · · ·+ Rfn, where n > 0 and fi ∈ S for 1 ≤ i ≤ n.
Moreover, we assume that S has a presentation

R⊕q M−→ R⊕(n+1) ε−→ S −→ 0

of R-modules, where q > 0 and ε = [1 f1 · · · fn]. Then

R∗ ⊆ R + J in S

where J denotes an ideal of S generated by all the entries of the first row of M.

Example 1.3

Let R = k[X 5,XY 4,Y 5]. Then

R∗ = k[X 5,X 9Y 6,X 8Y 7,X 4Y 11,XY 4,Y 5].
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Corollary 1.4

Suppose fi fj ∈ R for 1 ≤ ∀i , j ≤ n. Then R is strictly closed in S.

(Proof) Since S = R +
∑n

i=1 Rfi , we have R : S =
∩n

i=1[R : fi ]. Let α ∈ Ker ε
and write α =

∑n
i=0 αiei , where αi ∈ R. Then

α0 = −
n∑

i=1

αi fi in S

whence

α0fj = −
n∑

i=1

(αi fi )fj = −
n∑

i=1

αi (fi fj) ∈ R for 1 ≤ ∀j ≤ n.

Thus α0 ∈ R : S . Hence J ⊆ R : S ⊆ R, so that R∗ ⊆ R + J ⊆ R.
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Example 1.5

Let S = k[X ,Y ] be the polynomial ring over a field k . Let n ≥ 6 be an integer
and set

R = k[X n−iY i | 0 ≤ i ≤ n, i 6= 1, 3].

Then R is a strictly closed Cohen-Macaulay ring with dimR = 2.

(Proof) This follows from R = R + RX n−1Y + RX n−3Y 3 and
(X n−1Y )2, (X n−1Y )(X n−3Y 3), (X n−3Y 3)2 ∈ R.

Example 1.6

Let (R,m) be a RLR with dimR = 2. Let m = (x , y), I = (x3, xy4, y5). Then the
Rees algebra

R(I ) = R[It]

is strictly closed, where t is an indeterminate.

(Proof) We set J = (x3, x2y2, xy4, y5). Then R = R[Jt], R = R[x2y2t], and
(x2y2t)2 ∈ R
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Let R ⊆ T ⊆ S . Then R ⊆ R∗
T ⊆ R∗

S ⊆ S . Hence

if R is strictly closed in S , then it is strictly closed in T .

Example 1.7

Let S = k[[t]] be the formal power series ring over a field k. Consider

R = k[[t3, t8, t13]] ⊆ T = k[[t3, t5]] ⊆ S .

Then R is NOT strictly closed in S = R, but it is strictly closed in T .
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In 1949, Cahit Arf explored the multiplicity sequences of curve singularities.

In 1971, J. Lipman defined “Arf rings” for one-dimensional CM semi-local
rings.

Definition 1.8 (Lipman, 1971)

Let R be a CM semi-local ring with dimR = 1. Then R is called an Arf ring, if
the following hold:

(1) Every integrally closed open ideal I has a principal reduction.

(2) If x , y , z ∈ R s.t.

x is a NZD on R and
y

x
,
z

x
∈ R,

then yz/x ∈ R.
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Notice that

(1) I n+1 = aI n for ∃ n ≥ 0 and ∃ a ∈ I .

(2) Stability of I (if reduction exists).

Hence

Theorem 1.9 (Lipman, 1971)

Let R be a CM semi-local ring with dimR = 1. Then

R is Arf ⇐⇒ Every integrally closed open ideal is stable.

When R is a CM local ring with dimR = 1,

if R is an Arf ring, then R has minimal multiplicity.
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We assume

(R,m) is a Noetherian complete local domain with dimR = 1

R/m is an algebraically closed field of characteristic 0

Lipman proved:

R is saturated =⇒ R has minimal multiplicity.

Moreover, among all Arf rings between R and R,

∃ the smallest one Arf(R), called Arf closure.

Lipman extends the results of C. Arf about multiplicity sequences.
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This fact leads to obtain a characterization of Arf rings by means of the
semigroup of values, which gives rise to the notion of Arf semigroups.

Theorem 1.10

Let R = k[[H]] be the numerical semigroup ring over a field k. Then TFAE.

(1) R is an Arf ring.

(2) R is a weakly Arf ring, i.e., if x , y , z ∈ R s.t.

x is a NZD on R and
y

x
,
z

x
∈ R,

then yz/x ∈ R.

(3) If x , y , z ∈ H such that x ≤ y and x ≤ z, then y + z − x ∈ H.
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Proposition–Definition 1.11

Let R be a CM semi-local ring with dimR = 1. Suppose R is a finitely generated
R-module. Then, among all Arf rings between R and R, there is the smallest Arf
ring Arf(R), called the Arf closure of R.

Conjecture 1.12 (Zariski, 1971)

Let R be a CM semi-local ring with dimR = 1. Suppose R is a finitely generated
R-module. Then the equality

Arf(R) = R∗

holds in R.

Zariski’s conjecture holds if R contains a field (Lipman).

Theorem 1.13 (Main result)

Zariski’s conjecture holds.

Naoki Endo (Tokyo University of Science) Strict closure of rings April 12, 2021 14 / 29



1. Introduction 2. Proof of Zariski’s conjecture 3. Strictly closed rings

Proposition–Definition 1.11

Let R be a CM semi-local ring with dimR = 1. Suppose R is a finitely generated
R-module. Then, among all Arf rings between R and R, there is the smallest Arf
ring Arf(R), called the Arf closure of R.

Conjecture 1.12 (Zariski, 1971)

Let R be a CM semi-local ring with dimR = 1. Suppose R is a finitely generated
R-module. Then the equality

Arf(R) = R∗

holds in R.

Zariski’s conjecture holds if R contains a field (Lipman).

Theorem 1.13 (Main result)

Zariski’s conjecture holds.

Naoki Endo (Tokyo University of Science) Strict closure of rings April 12, 2021 14 / 29



1. Introduction 2. Proof of Zariski’s conjecture 3. Strictly closed rings

Theorem 1.14

Let R = k[[H]] be the numerical semigroup ring over a field k. Then TFAE.

(1) R is an Arf ring.

(2) R is a weakly Arf ring, i.e., if x , y , z ∈ R s.t.

x is a NZD on R and
y

x
,
z

x
∈ R,

then yz/x ∈ R.

(3) H is an Arf semigroup, i.e., if x , y , z ∈ H such that x ≤ y and x ≤ z, then
y + z − x ∈ H.

(4) R is strictly closed in R.

Example 1.15

k[[tn, tn+1, . . . , t2n−1]] (n ≥ 2) is strictly closed, but k[[t3, t8, t13]] is NOT.
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H is Arf, if x , y , z ∈ H such that x ≤ y and x ≤ z , then y + z − x ∈ H.

Let H = 〈3, 8, 13〉. Then
0 1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16 17

Take x = 6, y = 8, and z = 8. Then y + z − x = 10 6∈ H, so that H is not Arf.
Hence k[[H]] is not strictly closed.
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2. Proof of Zariski’s conjecture

Theorem 2.1

Let R be a CM semi-local ring with dimR = 1. Then TFAE.

(1) R is a strictly closed ring.

(2) R is an Arf ring.

known results

Let R be a CM semi-local ring with dimR = 1. Then

R is strictly closed =⇒ R is Arf. (Zariski)

The converse holds if R contains a field. (Lipman)
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Proof of (2) ⇒ (1)

There is a filtration:

R ⊆ J : J ⊆ J2 : J2 ⊆ · · · ⊆ Jm : Jm ⊆ · · · ⊆ R

where J denotes the Jacobson radical of R. Define

R ⊆ RJ =
∪
m≥0

[Jm : Jm] ⊆ R.

For n ≥ 0, we set

Rn =

{
R if n = 0

R
J(Rn−1)
n−1 if n ≥ 1

where J(Rn−1) stands for the Jacobson radical of Rn−1.

Hence
R ⊆ R1 ⊆ · · · ⊆ Rn ⊆ · · · ⊆ R.
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Step 1

The equality R =
∪

n≥0 Rn (= lim
→

Rn) holds.

Step 2

The equality R = R∗ holds in Rn for ∀n ≥ 0.

Lemma 2.2 (Key lemma)

Let (R,m) be a CM local ring with dimR = 1. Suppose that m2 = zm for some
z ∈ m. Let R1 ⊆ C ⊆ R be an intermediate ring s.t. C is a finitely generated
R-module and let

α : C ⊗R C → C ⊗R1 C

be an R-algebra map s.t. α(x ⊗ y) = x ⊗ y for ∀x , y ∈ C. Then

Kerα = (0) :C⊗RC z

holds.
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Let x ∈ R∗ in R and choose n ≥ 0 such that x ∈ Rn. Since R = lim
→

Rm, we get

R ⊗R Rn → R ⊗R R = lim
→

(R ⊗R Rm)

x ⊗ 1− 1⊗ x 7→ 0.

There exists ℓ ≥ n such that

R ⊗R Rn → R ⊗R Rℓ, x ⊗ 1− 1⊗ x 7→ 0.

Since

Rn ⊗R Rℓ → R ⊗R Rℓ = lim
→

(Rm ⊗R Rℓ)

x ⊗ 1− 1⊗ x 7→ 0,

there exists p ≥ n such that

Rn ⊗R Rℓ → Rp ⊗R Rℓ, x ⊗ 1− 1⊗ x 7→ 0.
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For q ∈ Z such that q ≥ p and q ≥ ℓ, we obtain

Rn ⊗R Rℓ → Rp ⊗R Rℓ → Rq ⊗R Rq

x ⊗ 1− 1⊗ x 7→ 0 7→ 0

Therefore

x ∈ Rn ⊆ Rq and x ⊗ 1 = 1⊗ x in Rq ⊗R Rq

so that x ∈ R∗ in Rq. Thus x ∈ R. Hence R = R∗ in R.

Theorem 2.3

Let R be a CM semi-local ring with dimR = 1. Then

R is strictly closed ⇐⇒ R is Arf.

Hence, Arf(R) = R∗ holds, provided R is a finitely generated R-module.
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A commutative ring R is said to be weakly Arf, provided

yz/x ∈ R, whenever x , y , z ∈ R s.t. x ∈ R is a NZD, y/x , z/x ∈ R.

Theorem 2.4

Let R be a Noetherian ring with (S2). Then TFAE.

(1) R is strictly closed.

(2) R is weakly Arf, and RP is Arf for ∀P ∈ SpecR with htR P = 1.

Corollary 2.5

Let (R,m) be a Noetherian local ring with dimR ≥ 2 and (S2). Then

R is strictly closed ⇐⇒ R is weakly Arf.
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Theorem 2.6

Let B be a CM semi-local ring with dimB = 1. Let A be a subring of B. We
assume that B is integral over A and A is a direct summand of B as an
A-module. If B is an Arf ring, then so is A.

Corollary 2.7

Let R be a CM semi-local ring with dimR = 1. Then

R is Arf =⇒ RG is Arf

for every finite subgroup G of AutR s.t. the order of G is invertible.
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3. Strictly closed rings

Question 3.1

What kind of rings are strictly closed?
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Theorem 3.2

Let R be a commutative ring and T an R-subalgebra of Q(R). Let V be a
non-empty subset of T s.t. T = R[V ]. If fg ∈ R for all f , g ∈ V , then R is
strictly closed in T .

Corollary 3.3

Let R be a commutative ring and J = (a1, a2, . . . , an) (n ≥ 3) an ideal of R s.t.
a21 = a2a3. Set I = (a2, a3, . . . , an) and consider

R = R(I ) ⊆ T = R(J)

Then R is strictly closed in T , provided I contains a NZD on R.

Theorem 3.4

The Stanley-Reisner ring R = k[∆] of ∆ is strictly closed.
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Let

R a Noetherian reduced ring.

MinR = {p1, p2, . . . , pℓ}, where ℓ = ♯MinR ≥ 2.

We assume

(∗) R/pi is integrally closed for 1 ≤ ∀i ≤ ℓ.

Then
0 → R

φ→ R/p1 ⊕ R/p2 ⊕ · · · ⊕ R/pℓ = R

where φ(x) = (x , x , . . . , x) for x ∈ R. Hence

R =
ℓ∑

i=1

Rei =
ℓ⊕

i=1

Rei

and
R ⊗R R =

∑
1≤i,j≤ℓ

R(ei ⊗ ej) =
⊕

1≤i,j≤ℓ

Rei ⊗R Rej .

where ei = (0, . . . , 0,

i
∨
1, 0, . . . , 0) ∈ R for 1 ≤ i ≤ ℓ.
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Let x ∈ R and write x = (x1, x2, . . . , xℓ) with xi ∈ R. Then

x ⊗ 1 =
∑

1≤i,j≤ℓ

xi (ei ⊗ ej) and 1⊗ x =
∑

1≤i,j≤ℓ

xj(ei ⊗ ej).

Therefore

x ⊗ 1 = 1⊗ x ⇐⇒ xi (ei ⊗ ej) = xj(ei ⊗ ej) for 1 ≤ ∀i , j ≤ ℓ.

Since
R(ei ⊗ ej) = Rei ⊗R Rej ∼= R/pi ⊗R R/pj ∼= R/[pi + pj ],

we have

x ⊗ 1 = 1⊗ x ⇐⇒ xi − xj ∈ pi + pj for 1 ≤ ∀i , j ≤ ℓ.

Proposition 3.5

Suppose that ℓ = 2. Then R is strictly closed.
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Proof.

Let x ∈ R and assume that x ⊗ 1 = 1⊗ x in R ⊗R R. Write x = (x1, x2) with
xi ∈ R. Since x1 − x2 ∈ p1 + p2, we get

x1 − x2 = y1 + y2

for some yi ∈ pi . Because

x = (x1, x2) = (x2 + y1 + y2, x2) = (x2 + y2, x2) = (x2 + y2, x2 + y2),

we have x ∈ R, whence R = R∗ in R.

Corollary 3.6

Let S be a RLR and let a1, a2, . . . , am, b1, b2, . . . , bn be a regular system of
parameters of S. Then

R = S/[(a1, a2, . . . , am) ∩ (b1, b2, . . . , bn)]

is a strictly closed ring.
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Thank you for your attention.
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